c o s ( a + b ) = c o s ( a ) c o s ( b ) − s i n ( a ) s i n ( b ) {\displaystyle cos(a+b)=cos(a)cos(b)-sin(a)sin(b)}
c o s ( a − b ) = c o s ( a ) c o s ( b ) + s i n ( a ) s i n ( b ) {\displaystyle cos(a-b)=cos(a)cos(b)+sin(a)sin(b)}
s i n ( a + b ) = s i n ( a ) c o s ( b ) + s i n ( b ) c o s ( a ) {\displaystyle sin(a+b)=sin(a)cos(b)+sin(b)cos(a)}
s i n ( a − b ) = s i n ( a ) c o s ( b ) − s i n ( b ) c o s ( a ) {\displaystyle sin(a-b)=sin(a)cos(b)-sin(b)cos(a)}
t a n ( a + b ) = t a n ( a ) + t a n ( b ) 1 − t a n ( a ) . t a n ( b ) {\displaystyle tan(a+b)={\frac {tan(a)+tan(b)}{1-tan(a).tan(b)}}}
t a n ( a − b ) = t a n ( a ) − t a n ( b ) 1 + t a n ( a ) . t a n ( b ) {\displaystyle tan(a-b)={\frac {tan(a)-tan(b)}{1+tan(a).tan(b)}}}
s i n ( 2 a ) = 2 s i n ( a ) . c o s ( a ) {\displaystyle sin(2a)=2sin(a).cos(a)}
c o s ( 2 a ) = c o s 2 ( a ) − s i n 2 ( a ) {\displaystyle cos(2a)=cos^{2}(a)-sin^{2}(a)}
t a n ( 2 a ) = 2. t a n ( a ) 1 − t a n 2 ( a ) {\displaystyle tan(2a)={\frac {2.tan(a)}{1-tan^{2}(a)}}}
1 + c o s ( 2 a ) = 2. c o s 2 ( a ) {\displaystyle 1+cos(2a)=2.cos^{2}(a)}
1 − c o s ( 2 a ) = 2. s i n 2 ( a ) {\displaystyle 1-cos(2a)=2.sin^{2}(a)}