Logarithmes
Aller à la navigation
Aller à la recherche
Wikipédia : [1]
Les fonctions logarithmiques sont les réciproques des fonctions exponentielles car elles sont bijectives (C'est-à-dire que tout élément de l'ensemble d'arrivée a un et un seul antécédent [2] ).
Si alors le logarithme en base a d'un réel strictement positif est l'exposant de la puissance de a égale à ce réel.
Quelques propriétés et définitions à retenir :
- (logarithme népérien [3])
- Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle log_a \left ( u^n \right ) = n.log_a (u) }
- Changement de base [4] : Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle log_a b = \frac{log_c a}{log_c b} }
Attention ! Ne pas oublier le domaine de définitions !!
Conditions d'existences : Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle base \ne \ 1 et > 0 }