Maths
Aller à la navigation
Aller à la recherche
Voici une version "simplifié", qui correspond à ce qui doit être maîtrisé pour s'en sortir en math dans le secondaire...
Arithmétique
- ensembles mathématiques
- Entiers(Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle \mathbb{Z}} ), exemples : 0, 1, -15, 7, -8 752 366...
- ...
- priorité des opérateurs
- parenthèses, puissance, multiplications/divisions, additions/soustractions
- fractions
- additions/soustractions simplifiées (addition soustraction de fractions expliqués)
- multiplications/divisions
- additions/soustractions simplifiées (addition soustraction de fractions expliqués)
Algèbre
Les règles de l'arithmétique s'appliquent [exemple de CE]
conditions d'existence
- fractions : le dénominateur doit être différent de zéro
ex : ou
- racines d'un nombre pair : ce qui est compris sous la racine doit être
- tangentes/cotangentes
- fonctions réciproques (arcsin,arctan,..)
- logarithmes
premier degré
Polynômes (ou degrés suivants)
équations
produits remarquables
limites
Analyse
[études de fonctions]
- notations
- domaine
- racines : on égale la fonction à zéro puis isole x. Ex :
- asymptotes
- intersection avec l'axe OY : on remplace x par 0. Ex :
- parité
- si f(x) = f(-x) alors la fonction est paire
- si f(-x) = -f(x) alors la fonction est impaire
- tableaux (signe, croissance, concavité)
- on place les racines de la dérivée première et la dérivée seconde ainsi que leurs signe
- dérivée première :
- si dérivée seconde positive alors fonction avec concavité si dérivée seconde négative alors fonction avec concavité
- on place les racines de la dérivée première et la dérivée seconde ainsi que leurs signe
- représentations (graphique)
Types
- droites
- paraboles
- homographiques
- exponentielles
- logarithmes
Trigonométrie
dans les triangles
dans le cercle
formules
| Formule fondamentales | Formules de base | Formules d'addition | Formules de duplication | Formules de Carnot | Formules de Simpson |
|---|---|---|---|---|---|
| Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle 1+cos(2a)= 2cos^2(a) } | Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle sin(p)+sin(q)= 2sin \left ( \frac{p+q} {2}\right ) cos \left ( \frac{p-q} {2}\right ) } | ||||
| Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle cos(a-b)= cos(a)cos(b)+sin(a)sin(b) } | Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle cos(2a)= cos^2(a)-sin^2(a) } | Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle 1-cos(2a)= 2sin^2(a) } | Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle sin(p)-sin(q)= 2sin \left ( \frac{p-q} {2}\right ) cos \left ( \frac{p+q} {2}\right ) } | ||
| Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle sin(a+b)= sin(a)cos(b)+sin(b)cos(a) } | Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle cos(p)+cos(q)= 2cos \left ( \frac{p+q} {2} \right ) cos \left ( \frac{p-q} {2}\right ) } | ||||
| Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle sin(a-b)= sin(a)cos(b)-sin(b)cos(a) } | Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle cos(p)-cos(q)= -2sin \left ( \frac{p+q} {2}\right ) sin \left ( \frac{p-q} {2}\right ) } | ||||
| Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle tan(a-b) = \left ( \frac{tan(a) - tan(b)} {1 + tan(a)tan(b)}\right ) } | |||||
| Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle tan(a+b) = \left ( \frac{tan(a) + tan(b)} {1 - tan(a)tan(b)}\right ) } |