« Logarithmes » : différence entre les versions

De TravauxIndse
Aller à la navigation Aller à la recherche
Aucun résumé des modifications
Aucun résumé des modifications
Ligne 2 : Ligne 2 :




Les fonctions logarithmiques sont les réciproques des fonctions [[exponentielles]] car elles sont bijectives (C'est-à-dire que tout élément de l'ensemble d'arrivée a un et un seul antécédent (c'est à dire image d'un seul élément de départ)).
Les fonctions logarithmiques sont les réciproques des fonctions [[exponentielles]] car elles sont bijectives (C'est-à-dire que tout élément de l'ensemble d'arrivée a un et un seul antécédent [http://fr.wikipedia.org/wiki/Ant%C3%A9c%C3%A9dent_(math%C3%A9matiques)] ).


Si <math> a \in R_0^+ </math> alors le logarithme en base a d'un réel strictement positif est l'exposant de la puissance de a égale à ce réel.<math> \rightarrow \log_a (a^x) = x </math>
Si <math> a \in R_0^+ </math> alors le logarithme en base a d'un réel strictement positif est l'exposant de la puissance de a égale à ce réel.<math> \rightarrow \log_a (a^x) = x </math>

Version du 20 février 2014 à 08:33

Wikipédia : [1]


Les fonctions logarithmiques sont les réciproques des fonctions exponentielles car elles sont bijectives (C'est-à-dire que tout élément de l'ensemble d'arrivée a un et un seul antécédent [2] ).

Si Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle a \in R_0^+ } alors le logarithme en base a d'un réel strictement positif est l'exposant de la puissance de a égale à ce réel.Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle \rightarrow \log_a (a^x) = x }


Quelques propriétés et définitions à retenir :

  • Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle log_a (y) = x \Leftrightarrow y = a^{x} }
  • Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle log_{10} \left ( x \right ) = log (x) }
  • Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle log_{e} \left ( x \right ) = ln (x) } (logarithme népérien)
  • Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle log_a \left ( u.v \right ) = log_a u + log_a v }
  • Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle log_a \left ( \frac{u}{v} \right ) = log_a u - log_a v }
  • Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle log_a \left ( u^n \right ) = n.log_a (u) }

Attention ! Ne pas oublier le domaine de définition !!

Conditions d'existences : Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle base \ne \ 1 et > 0 }

Le logarithme népérien: [3]