« Logarithmes » : différence entre les versions
Aucun résumé des modifications |
Aucun résumé des modifications |
||
| Ligne 1 : | Ligne 1 : | ||
Le logarithme népérien: [http://www.youtube.com/watch?v=yNMm791keMU] | |||
Wikipédia : [http://fr.wikipedia.org/wiki/Logarithme] | Wikipédia : [http://fr.wikipedia.org/wiki/Logarithme] | ||
| Ligne 19 : | Ligne 19 : | ||
Attention ! Ne pas oublier le domaine de définitions !! | Attention ! Ne pas oublier le domaine de définitions !! | ||
Conditions d'existences : <math> base \ne \ 1 et > 0 </math> | Conditions d'existences : <math> base \ne \ 1 et > 0 </math> | ||
Version du 20 février 2014 à 08:28
Le logarithme népérien: [1] Wikipédia : [2]
Les fonctions logarithmiques sont les réciproques des fonctions exponentielles car elles sont bijectives (C'est-à-dire que tout élément de l'ensemble d'arrivée a un et un seul antécédent (c'est à dire image d'un seul élément de départ)).
Si Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle a \in R_0^+ } alors le logarithme en base a d'un réel strictement positif est l'exposant de la puissance de a égale à ce réel.
Quelques propriétés et définitions à retenir :
- Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle log_{10} \left ( x \right ) = log (x) }
- Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle log_{e} \left ( x \right ) = ln (x) } (logarithme népérien)
- Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle log_a \left ( u.v \right ) = log_a u + log_a v }
- Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle log_a \left ( \frac{u}{v} \right ) = log_a u - log_a v }
- Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle log_a \left ( u^n \right ) = n.log_a (u) }
Attention ! Ne pas oublier le domaine de définitions !!
Conditions d'existences : Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle base \ne \ 1 et > 0 }