« Logarithmes » : différence entre les versions
Aller à la navigation
Aller à la recherche
Aucun résumé des modifications |
Aucun résumé des modifications |
||
| Ligne 5 : | Ligne 5 : | ||
Les fonctions logarithmiques sont les réciproques des fonctions [[exponentielles]] car elles sont bijectives (C'est-à-dire que tout élément de l'ensemble d'arriver à un et un seul antécédent = image d'en seul élément de départ). | Les fonctions logarithmiques sont les réciproques des fonctions [[exponentielles]] car elles sont bijectives (C'est-à-dire que tout élément de l'ensemble d'arriver à un et un seul antécédent = image d'en seul élément de départ). | ||
Si <math> a \in R_0^+ </math> alors le logarithme en base a d'un réel strictement positif est l'exposant de la puissance de a égale à ce réel.<math> \rightarrow \log_a (a^x) = x </math> | |||
Quelques propriétés et définitions à retenir : | |||
* <math> log_a (y) = x \Leftrightarrow y = a^{x} </math> | * <math> log_a (y) = x \Leftrightarrow y = a^{x} </math> | ||
Version du 10 février 2014 à 13:19
Introduction: [1] Wikipédia : [2]
Les fonctions logarithmiques sont les réciproques des fonctions exponentielles car elles sont bijectives (C'est-à-dire que tout élément de l'ensemble d'arriver à un et un seul antécédent = image d'en seul élément de départ).
Si alors le logarithme en base a d'un réel strictement positif est l'exposant de la puissance de a égale à ce réel.
Quelques propriétés et définitions à retenir :
- (logarithme népérien)
- <math> log_a \left ( u^n \right ) = n.log_a (u)