« Logarithmes » : différence entre les versions

De TravauxIndse
Aller à la navigation Aller à la recherche
Aucun résumé des modifications
Aucun résumé des modifications
Ligne 2 : Ligne 2 :




Les fonctions logarithmiques sont les réciproques des fonctions [[exponentielles]] car elles sont bijectives (C'est-à-dire que tout élément de l'ensemble d'arrivée a un et un seul antécédent (c'est à dire image d'un seul élément de départ)).
Les fonctions logarithmiques sont les réciproques des fonctions [[exponentielles]] car elles sont bijectives (C'est-à-dire que tout élément de l'ensemble d'arrivée a un et un seul antécédent [http://fr.wikipedia.org/wiki/Ant%C3%A9c%C3%A9dent_(math%C3%A9matiques)] ).


Si <math> a \in R_0^+ </math> alors le logarithme en base a d'un réel strictement positif est l'exposant de la puissance de a égale à ce réel.<math> \rightarrow \log_a (a^x) = x </math>
Si <math> a \in R_0^+ </math> alors le logarithme en base a d'un réel strictement positif est l'exposant de la puissance de a égale à ce réel.<math> \rightarrow \log_a (a^x) = x </math>

Version du 20 février 2014 à 08:33

Wikipédia : [1]


Les fonctions logarithmiques sont les réciproques des fonctions exponentielles car elles sont bijectives (C'est-à-dire que tout élément de l'ensemble d'arrivée a un et un seul antécédent [2] ).

Si alors le logarithme en base a d'un réel strictement positif est l'exposant de la puissance de a égale à ce réel.


Quelques propriétés et définitions à retenir :

  • (logarithme népérien)

Attention ! Ne pas oublier le domaine de définition !!

Conditions d'existences :

Le logarithme népérien: [3]