« Logarithmes » : différence entre les versions

De TravauxIndse
Aller à la navigation Aller à la recherche
Aucun résumé des modifications
Aucun résumé des modifications
Ligne 3 : Ligne 3 :




Les fonctions logarithmiques sont les réciproques des fonctions [[exponentielles]] car elles sont bijectives (C'est-à-dire que tout élément de l'ensemble d'arriver à un et un seul antécédent = image d'en seul élément de départ).
Les fonctions logarithmiques sont les réciproques des fonctions [[exponentielles]] car elles sont bijectives (C'est-à-dire que tout élément de l'ensemble d'arrivée a un et un seul antécédent (c'est à dire image d'un seul élément de départ)).


Si <math> a \in R_0^+ </math> alors le logarithme en base a d'un réel strictement positif est l'exposant de la puissance de a égale à ce réel.<math> \rightarrow \log_a (a^x) = x </math>
Si <math> a \in R_0^+ </math> alors le logarithme en base a d'un réel strictement positif est l'exposant de la puissance de a égale à ce réel.<math> \rightarrow \log_a (a^x) = x </math>

Version du 13 février 2014 à 08:05

Introduction: [1] Wikipédia : [2]


Les fonctions logarithmiques sont les réciproques des fonctions exponentielles car elles sont bijectives (C'est-à-dire que tout élément de l'ensemble d'arrivée a un et un seul antécédent (c'est à dire image d'un seul élément de départ)).

Si alors le logarithme en base a d'un réel strictement positif est l'exposant de la puissance de a égale à ce réel.


Quelques propriétés et définitions à retenir :

  • (logarithme népérien)

Attention ! Ne pas oublier le domaine de définitions !!

Conditions d'existences :