« Logarithmes » : différence entre les versions

De TravauxIndse
Aller à la navigation Aller à la recherche
Aucun résumé des modifications
Aucun résumé des modifications
Ligne 1 : Ligne 1 :
Introduction: [http://www.youtube.com/watch?v=yNMm791keMU]
Les fonctions logarithmiques sont les réciproques des fonctions [[exponentielles]] car elles sont bijectives (C'est-à-dire que tout élément de l'ensemble d'arriver à un et un seul antécédent = image d'en seul élément de départ).
Les fonctions logarithmiques sont les réciproques des fonctions [[exponentielles]] car elles sont bijectives (C'est-à-dire que tout élément de l'ensemble d'arriver à un et un seul antécédent = image d'en seul élément de départ).


Si <math> a \in R_0^+ </math> alors le logarithme en base a d'un réel strictement positif est l'exposant de la puissance de a égale à ce réel.<math> \rightarrow \log_a (a^x) = x </math>
Si <math> a \in R_0^+ </math> alors le logarithme en base a d'un réel strictement positif est l'exposant de la puissance de a égale à ce réel.<math> \rightarrow \log_a (a^x) = x </math>

Version du 6 février 2014 à 08:47

Introduction: [1]


Les fonctions logarithmiques sont les réciproques des fonctions exponentielles car elles sont bijectives (C'est-à-dire que tout élément de l'ensemble d'arriver à un et un seul antécédent = image d'en seul élément de départ).

Si alors le logarithme en base a d'un réel strictement positif est l'exposant de la puissance de a égale à ce réel.